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Introduction

▪ Eye-tracking or gaze estimation refers to the problem of determining “where”
a (human) subject is looking at on a given specific time moment. 

▪ Eye-tracking has attracted the interest of a wide range of disciplines
▪ ranging from signal processing, neuroscience, computer vision, machine learning, due to 

its important applications in psychology, medicine, sports, virtual reality, robotics, 
education, and marketing, to name a few. 

▪ Many different solution variants exist depending on the target application 
and its specifications:
▪ infrared cornea reflection

▪ event camera-based, 

▪ eye-tracking glasses

▪ video-only eye-tracking, which is the main focus of this paper.
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Eye-tracking in marketing

▪ Eye-tracking is an invaluable tool for extracting metrics (e.g., fixation time to 
some stimuli) related to cognitive emotional responses, such as attention.

▪ Controlled marketing experiments are expensive, time consuming and in 
many cases unnatural.

▪ Equipment used in marketing experiments is typically too much over-
specified for the task at hand (detecting saccades is rarely if ever used).

▪ These cost limitations leads to developing relatively small datasets with few 
participants, thus gaining limited insights.

▪ Video-based eye-tracking can offer a valuable alternative, being implemented
on mobile devices or webcams, however, it suffers for the standard 
challenges of appearance-based eye-tracking.
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The video-based gaze-tracking problem

4

▪ Consists of several steps, each accumulating error:

▪ Camera calibration (estimating intrinsic and extrincic camera parameters)

▪ Face detection (using haar cascades or Deep Learning)

▪ Optional steps:
• Eye detection

• Fiducials

• Estimation of the 3D eye-position

▪ Estimation of the gaze vector (3d or 2d after canceling translation and scaling 
factors)

▪ Intersection of the gaze vector with the computer screen (2D pixel coordinates)
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Challenges in appearance-based gaze-estimation

5

▪ Multiple sources of input variance: 

▪ capture conditions, that can be controlled by stringent experimental settings, well-
defined camera specifications, experiment locations, illumination conditions, 
subject distances/angles from the sensor, and/or even employing head/chin rests 
wherever possible. 

▪ variance related to individual test subject appearance, such as their physical 
characteristics (e.g., age, gender, skin/eye/face color/dimensions, and ophthalmic 
health conditions)
• That can only be controlled with calibration….
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Problem statement

6

▪ Assume a dataset of 𝒟 = 𝐈𝑖 , 𝒚𝑖 , 𝑝𝑖 , 𝑖 = 1,… , 𝑁 items, where

▪ 𝐈 ∈ ℛ𝑯×𝑾×𝑪 are facial/eye cropped images

▪ 𝐲 ∈ ℛ𝟐 is the normalized gaze direction (angular coordinates)

▪ 𝑝 ∈ {1,… , 𝑃} is an index for each participant

▪ Gaze estimation is formulated as a regression problem:

▪ 𝒈 𝐈, 𝜽 ↦ 𝒳, 𝒙 ∈ ℛ𝑫, a mapping function from images to features

▪ ෝ𝒚 = 𝒇(𝒙;𝑾, 𝒃) where 𝑾,𝒃 are the Weight and bias of a linear operation

▪ The linear operation is trained simultaneously with the mapping 
function using an appropriate loss function:

▪ Typically the L1 loss 𝐿 = ෝ𝒚 − 𝒚 . 
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Uncalibrated vs uncalibrated gaze estimation

7

▪ In the uncalibrated gaze estimation 𝒇(𝒙;𝑾, 𝒃) is the same for all subjects, not 
updated in the test phase.

▪ In the calibrated gaze estimation 𝒇𝑝(𝒙;𝑾𝑝, 𝒃𝑝), a different linear operation is 
learned for each subject/participant:
▪ Support Vector Regression.
▪ Few shot learning e.g., Model Agnostic Meta-Learning
▪ SVR works better with many calibration points, Few-shot learning with fewer, it is not 

trivial to decide which to employ.

▪ Calibrated gaze estimation works significantly better than uncalibrated, but it 
requires ground truth annotations.
▪ Additional time, prone to subject co-operation issues, limitations in applicability.
▪ Many works address these limitations by employing un-supervised learning of the linear 

operation.
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Contribution

8

▪ We attempt to control between subject variances by proposing an 
architecture that supports implicit – train-free system calibration for 
each individual subject. 
▪ Unlike existing approaches, the proposed methodology requires no model re-

training/finetuning and no annotations at all. 

▪ The proposed architecture provides considerable performance gains 
when compared to its respective uncalibrated baseline (which remains a 
fair comparison). 

▪ Besides performance gains, the proposed method offers practical 
implications 
▪ minimize individual researcher calibration efforts and potential calibration errors, 

reducing the time spent by human subjects during each experimental session.
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Method properties

9

▪ Implicit calibration is achieved by employing merely per participant 
(facial) images

▪ in a novel calibration-aware neural architecture that learns to operate with 
comparative/attentive information between the test participant image and the 
proposed calibration anchors.  

▪ Calibration anchors are features extracted by using representative images for a 
given train/test subject.

▪ The derived features of the test images are combined with the calibration anchors 
using an attention mechanism. 

▪ Neither the linear operation nor the neural architecture are 
trained/finetuned during the test phase.
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Differences with state of the art
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▪ SoA focuses on deriving more efficient architectures for the feature 
extraction phase (i.e., faster, stronger):

▪ 𝒙 = 𝑔(𝑰; 𝜽)

▪ Or better ways to train or derive the regression part:

▪ 𝒇𝑝(𝒙;𝑾𝑝, 𝒃𝑝),

▪ Our focus is to train 𝑔() and 𝑓() only once from the train dataset, and 
then adapt by different inputs:

▪ 𝐱 = 𝑔 𝑰; 𝜽 , features of input images

▪ 𝐳 = 𝑔(𝑺, 𝑝; 𝜽), features of “support” images of participant 𝑝𝑖
▪ 𝒚 = 𝑓(𝒙, 𝒛;𝐖, 𝐛) 
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How calibration anchors are obtained
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▪ During training:

▪ Recall 𝒟 = 𝐈𝑖 , 𝒚𝑖 , 𝑝𝑖 , 𝑖 = 1,… ,𝑁 a gaze estimation dataset of 𝑃 subjects. 

▪ We break this dataset into subsets for each subject: 𝒟𝑝 = 𝐈𝑖 , 𝒚𝑖 , 𝑖 = 1,… ,𝑁𝑝.

▪ We define support gazes as the intersection between (roughly) similar gazes directions 
between subjects:

• 𝒴𝑠 = {𝒴1,∩ ⋯∩ 𝑌𝑃}

▪ Our support set consists of images corresponding to the subset of roughly similar gazes 
(bottom looking, top looking, left looking, etc.).

▪ At deployment stage, the support set is obtained by using random images for 
the test participant, and ordered based on detected gaze direction.

▪ No ground truth neither model re-training with these data is needed.
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Overall architecture
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Experimental results
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Significance analysis

14

▪ Friedman's statistical tests:

▪ MPIIFacegaze dataset (p = 0.0201) 

▪ MPIIGaze-Resnet (p =0.0201) 

▪ MPIIGaze-Lenet (p = 0.0008) 

▪ Wilcoxon signed-rank tests:

▪ MPIIFacegaze dataset (p = 0.0025) 

▪ MPIIGaze-Resnet (p-value =0.0071)

▪ MPIIGaze-Lenet (p-value = 0.0001).
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Explanation of the results and limitations
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▪ The architecture itself although introducing some additional parameters 
and complexity, does not improve the results significantly, most 
performance comes when anchors are appropriately selected.

▪ The involvement of support samples normalizes some variance related 
to subject appearance, thus potentially leading to improved 
generalization on the feature extraction and regression operations.
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Limitations

16

▪ Results have only been tested on datasets where translation and 
rotation factors had been cancelled. 

▪ We examined datasets with limited variation in illumination conditions 
and distances from the screen. 

▪ Further improvements could be expected when the method is applied 
on raw images (realistic case) or conditions of wider variance.

▪ Neverthelss, optimizing the number of support samples or estimating 
the influence of each support sample are non-trivial problems.



CONVISE project has received funding from the European Union’s HE research and innovation programme under the g.a.n. 101103256

Conclusions and future work

17

▪ A gaze estimation method that implicitly learns to operate for different 
subjects was described. Important and statistically significant 
differences were observed between the proposed and competing 
methods. 

▪ This architecture is promising for other regression problems that 
present individual subject particularities (e.g., human 3D pose 
estimation).

▪ Future work: 
▪ further polishing of the architecture and training procedure and additional 

comparisons in other datasets and more baselines.

▪ Ablations with different types and number of support samples (during both the 
training and the test phase)
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Thank you!

Q & A

Vasileios.mygdalis@uantwerpen.be
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